Grade filtration of linear functional systems
نویسنده
چکیده
The grade filtration of a finitely generated left module M over an Auslander regular ring D is a built-in classification of the elements of M in terms of their grades (or their (co)dimensions if D is also a Cohen-Macaulay ring). In this paper, we show how grade filtration can be explicitly characterized by means of elementary methods of homological algebra. Our approach avoids the use of sophisticated methods such as bidualizing complexes, spectral sequences, associated cohomology, and Spencer cohomology used in the literature of algebraic analysis. Efficient implementations dedicated to the computation of grade filtration can then be easily developed in the standard computer algebra systems (see the Maple package PurityFiltration and the GAP4 package AbelianSystems). Moreover, this characterization of grade filtration is shown to induce a new presentation of the left D-module M which is defined by a block-triangular matrix formed by equidimensional diagonal blocks. The linear functional system associated with the left D-module M can then be integrated in cascade by successively solving inhomogeneous linear functional systems defined by equidimensional homogeneous linear systems of increasing dimension. This equivalent linear system generally simplifies the computation of closed-form solutions of the original linear system. In particular, many classes of underdetermined/overdetermined linear systems of partial differential equations can be explicitly integrated by the packages PurityFiltration and AbelianSystems, but not by computer algebra systems such as Maple. Key-words: Algebraic analysis, grade filtration, module theory, homological algebra, symbolic computation, mathematical systems theory, underdetermined/overdetermined linear functional systems, linear systems of partial differential equations. ∗ INRIA Saclay Île-de-France, DISCO project, L2S, Supélec, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France, [email protected], http://www.sophia.inria.fr/members/Alban.Quadrat/index.html. in ria -0 06 32 28 1, v er si on 1 14 O ct 2 01 1 Filtration par grade des systèmes linéaires fonctionnels Résumé : La filtration par grade d’un module à gauche M finiment engendré sur un anneau Auslander-régulier D est une classification intrinsèque des éléments de M en fonction de leurs grades (ou de leurs (co)dimensions si D est aussi un anneau de Cohen-Macaulay). Dans ce papier, nous montrons comment la filtration par grade peut être explicitement caractérisée au moyen de techniques élémentaires d’algèbre homologique. Notre approche évite l’utilisation de techniques sophistiquées telles que les complexes bidualisants, les suites spectrales, la cohomologie associée et la cohomologie de Spencer utilisées dans la littérature d’analyse algébrique. Des implantations efficaces dédiées au calcul de la filtration par grade peuvent alors être facilement développées dans les systèmes standards de calcul formel (voir le package PurityFiltration de Maple et le package AbelianSystems de GAP4). De plus, cette caractérisation de la filtration par grade induit une nouvelle présentation du D-module à gauche M qui est définie par une matrice triangulaire par blocs formée de blocs diagonaux équidimensionnels. Le système linéaire fonctionnel associé au D-module à gauche M peut alors être intégré en cascade par la résolution successive de systèmes linéaires fonctionnels inhomogènes définis par des systèmes linéaires homogènes équidimensionnels de dimension croissante. Ce système linéaire équivalent simplifie généralement le calcul des solutions sous formes closes du système linéaire originel. En particulier, de nombreux systèmes linéaires sur-déterminés/sous-déterminés d’équations aux dérivées partielles peuvent être explicitement intégrés au moyen des packages PurityFiltration et AbelianSystems, alors qu’ils ne peuvent l’être par des systèmes de calcul formel tels que Maple. Mots-clés : Analyse algébrique, filtration par grade, théorie des modules, algèbre homologique, calcul formel, théorie mathématique des systèmes, systèmes linéaires fonctionnels sur-déterminés/ sous-déterminés, systèmes linéaires d’équations aux dérivées partielles. in ria -0 06 32 28 1, v er si on 1 14 O ct 2 01 1 Grade filtration of linear functional systems 3
منابع مشابه
Further Observations on Blocking Zeros in Linear Muitivariabie systems (RESEARCH NOTE).
While attempting to clarify the confusion concerning the conceptualization of "blocking zeros" in state space in the recent literature, some new observations are made on the relationship between pole-zero cancellation and transmission blocking. An important distinction between uncontrollable and unobservable eigenvalue s is pointed out; and it is argued that the description of a Blocking Zero, ...
متن کاملExponential Stability of Linear Systems with Multiple Time Delays
In this paper, a class of linear systems with multiple time delays is studied. The problem of exponential stability of time-delay systems has been investigated by using Lyapunov functional method. We will convert the system of multiple time delays into a single time delay system and show that if the old system is stable then the new one is so. Then we investigate the stability of converted new ...
متن کاملEffects of Linear and Nonlinear Periodized Resistance Training on some of Kidney Functional Parameters in Women with Abdominal Obesity
Introduction: The aim of this study was to determine the effects of linear and nonlinear periodized resistance training on serum levels of creatinine, glomerular filtration rate (GFR), and creatinine clearance in women with abdominal obesity. Materials & Methods: This study was conducted on 42 women who were randomly assigned into linear periodized (LP) resistance training (N=15, age: 40.4...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملSTABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES
In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011